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Abstract

Anti-perovskite halides (AH) with formula Ag3BC (where B=S, Se and C=I,Br,Cl) are a
family of semiconductor materials displaying suitable thermal and optoelectronic proper-
ties for potential energy material applications, such as photovoltaic and thermoelectric de-
vices. Nevertheless, AH have been little investigated to date, both at the experimental and
theoretical levels, hence their stability, structural and vibrational properties remain rela-
tively unknown. In this work, we have studied the representative compound Ag3SBr with
computational first-principles approaches for advancing knowledge in material science
and assessing the functional properties of anti-perovskite halides. In particular, we have
employed Density Functional Theory (DFT) techniques considering different exchange-
correlation functionals and quantum relativistic spin-orbit coupling effects to simulate this
material. Our DFT calculations have revealed several interesting results. First, different
interesting phases have been found using crystal structure prediction techniques. Second,
we have shown that at least four of them are stable phases non previously reported.
Among the stable phases a cubic phase with symmetry group P213 emerges as a very
promising candidate structure for the ground state of Ag3SBr. And third, the computed
band gaps approximately range from 1 to 2 eV and the optical absorption coefficients
are relatively large ( 104 − 105 cm−1) over all the whole visible spectrum. Therefore, in
view of our theoretical DFT results it can be concluded that (1) new and more detailed
experiments are needed to fully characterize AH at the fundamental level, and (2) the
optoelectronic and thermodynamic stability properties of Ag3SBr suggest great potential
of AH for photovoltaic applications.
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1 Introduction

1.1 Introduction and motivation of this project

Anti-perovskites [1] are inorganic materials with chemical structure A3BC where B and
C are anions and A is a cation, in contraposition with pervoskites [2] having chemical
structure ABC3 where A and B are cations and C is an anion. In Fig. 1 we can visualize
these structures.

(a) Perovskite (b) Anti-perovskite

Figure 1: Perovskite and anti-perovskite structure comparison. Here green spheres
represent cations, while red spheres are anions. It is easy to see that they have the same

structure but switching cations and anions places [3].

Despite originally anti-perovskite was used to designate materials with chemical formula
A3BC and the structure shown in Fig. 1b, nowadays it is usual to use anti-perovskite
to designate materials with the same composition A3BC but different structure (as an
example one can take a look at Fig. 5, where we can clearly see that almost none of the
studied phases of our anti-perovskite material of interest present the structure in Fig. 1b).

Halides refer to the fact that one of the anions of the structure is an halogen atom, then it
could be fluoride F– , chloride Cl– , bromide Br– , iodide I– or astatide As– . Then for anti-
perovskite halides we mean materials with A3BX where X=F,Cl,Br, I,As, while usually
A=Ag and B=S, Se.

These materials are expected to be great candidates for being used in energy materials
applications [3, 4, 5], because their suitable band gaps and optoelectronic properties, and
also, of their ion and heat transport properties.

One of the most interesting energy materials applications are photovoltaic applications,
as materials for thin film solar cells [6]. A thin film solar layer cell can be thought of a
number of thin layers of different materials, where a layer of the desired suitable material
can absorb light and uses it to generate electron-hole pairs. With two extra semiconduc-
tor layers, we can separate electrons and holes to avoid recombination. Finally, metallic
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electrodes can be deposited onto the semiconductor layers in order to extract the photo-
generated electrical carriers and create an electrical potential. In Fig. 2 we can see a
simplified schematic representation of this device. This is an oversimplified description
and in practice a real device will have extra layers and more complex design.

Figure 2: Simplified sketch of a thin film solar cell that generates a flow of electrons as
consequence of the absorption of light in the middle layer.

Another interesting application of these materials is as superionic materials [7, 8], since
some of they seem to present superionic behaviour [9]. Superionic materials have high ion
conductivity, this means that some of the ions can diffuse at ease within the crystalline
matrix formed by the other types of atoms. This property can be used, for example, in
solid-state batteries and fuel cells.

In this project we will model and characterize Ag3SBr, an anti-perovskite material that
may be useful for some of the explained applications. This material was sintetized and
characterized several years ago [9, 10, 11, 12], but a lot of information on its structural
and functional properties remain largely unknown. In these papers, different phases were
predicted for this material experimentally at different temperatures, but at or near zero
temperatures a monoclinic or triclinic phase was observed, and for room temperature a
cubic phase with group of symmetries Pm3m [12]. The synthesis and characterization
of this material were recently reported in work [13], where a cubic Pm3m phase was
observed.

1.2 Next chapters overview

This work is organized as follows. In this first chapter, we provide a brief decription of the
analyzed materials and the possible applications that they might be suitable for, mainly
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photovoltaic applications.

In the following two chapters, we provide a brief description of the computational methods
and theory that we have used to model and calculate the properties of a given material.

In the second chapter, we will give a brief introduction of Density Functional Theory
(DFT), that is an electronic first-principles method used to numerically solve the quantum
Schrödinger equation for the electrons in a condensed matter system. It is a very efficient
computational method that allows us to estimate energies, forces and functional properties
of materials with a relatively good degree of accuracy.

In the third chapter, we will review basic concepts of Solid State Physics, that we will need
to have clear for study the properties of the modelled materials. Remember that Solid
State Physics is a theory that uses quantum mechanics and statistical physics formalism
to describe the properties of the matter in solid state.

In the fourth chapter, we will provide a brief summary of the procedure that we have
followed to find stable structures for our material of interest and then model them to find
the different properties. A brief description of the software employed in this project is also
provided.

In the fifth chapter, we will present the results of our DFT calculations for the different
found phases and the different results obtained for the six final studied phases. Some of the
computed values are: energies, phonon dispersion curves, band gaps, optical properties,
among others.

Finally, in chapter six and seven, we will provide the conclusions of our work and discuss
future research directions on anti-perovskite halide materials.
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2 Density Functional Theory

Density Functional Theory (DFT) [14, 15] is a first-principles computational method used
to determine the ground-state of many-electron system. DFT is computationally very
efficient so that it can be used, for instance, to determine the electronic band structure of
solids with reliability. This field has its origin in the work developed by Hohenberg, Kohn
and Sham in the 60s [16, 17].

In this section we will give a brief explanation of this method, since we will use it to
modellize and simulate our materials of interest.

2.1 The materials many-body problem

Materials are composed of nuclei (or ions) and electrons. The nuclei and electrons in
a material, or any other condensed matter system, fundamentally interact through the
electrostatic Coulomb interaction.

The time-independent Schrödinger equation of a many-body system is expressed as:

ĤΨ = EΨ, (2.1)

where Ψ is the wave function of the system, Ĥ is the Hamiltonian operator, and E the
energy eigenvalue.

For the particular case of an electron under external potential V , Eq. 2.1 adopts the form:(
p2

2me

+ V̂ (r)

)
Ψ = EΨ, (2.2)

where V̂ (r) is the external potential that depends on the position of the electron, me is
the mass of the electron, and p is the momentum operator that is defined as p = −iℏ∇
(ℏ is Planck’s constant, see List of Physical constant in page iv).

To solve the Schrödinger equation of a sytem that contains N electrons and M ions, the
corresponding wave function Ψ (r1, r2, . . . , rN ,R1,R2, . . . ,RM) needs to be determined.
Note that we have used r and R to differentiate between the position of the electrons and
the position of the ions, respectively.

The Hamiltonian for this system contains the kinetic and potential energy of the system,
and also other external fields:

Ĥ = − ℏ2

2me

∑
i

∇2
i −

∑
i,I

ZIe
2

|ri −RI |
+

1

2

∑
i ̸=j

e2

|ri − rj|

−
∑
I

ℏ2

2MI

∇2
I +

1

2

∑
I ̸=J

ZIZJe
2

|RI −RJ |
+
∑
α

Ĥexternal field
α .

(2.3)

The first term is the kinetic energy of the electrons, the second is the Coulomb attraction
between an electron and an ion, the third term is the Coulomb repulsion between two
electrons, the fourth term is the kinetic energy of nuclei, the fifth term is the Coulomb
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repulsion between two ions, and the last term contains the different external fields that
can be applied to the system (for example, an external electric field).

If we introduce the many particle wave function and this Hamiltonian in Eq. (2.1) we
should be able to get the energies of the system, but in practice this equation is very
difficult to solve.

To simplify the Hamiltonian presented in Eq. (2.3) we can use the Born-Oppenheimer
approximation where we can assume that because the masses of the ions are orders of
magnitude larger that the mass of electrons, and then ions are almost static in comparison
to the electrons, thus we can get rid of the kinetic part of the ions,

∑
I

ℏ2
2MI

∇2
I = 0.

From here it will be helpful to use Hartree atomic units, ℏ = me = e = 4π
ε0

= 1, just in
order to have more readable expressions.

Then we can rewrite the Hamiltonian as:

Ĥ = T̂ + V̂ext + V̂int +EII = −
∑
i

1

2
∇2

i +
∑
i,I

VI (|ri −RI |) +
1

2

∑
i ̸=j

1

|ri − rj|
+EII, (2.4)

where V̂ext =
∑

i,I VI (|ri −RI |) is the potential that electrons feel because the static

ground of ions, V̂int = 1
2

∑
i ̸=j

1
|ri−rj | is the electron-electron interaction, and EII is the

classical interaction between ions and other terms that contribute to the energy of the
system but do not affect the distribution of electrons.

Any external potential, as an external electrical field can be included in V̂ext, but we will
not include any of them since they are not relevant for our problem, thus from now Vext
refers only to the interaction of the electrons with the static ground of ions.

We can also get rid of the term EII since it is just an energy shift and will not be
important for the further computations, then Ĥ = T̂ + V̂ext+ V̂int. Note that Hamiltonian
defined in Eq. 2.3 (without taking into consideration external fields) can be written as
Ĥ = Ĥelectrons + Ĥnuclei, and with the Born-Oppenheimer approximation what we do is to
consider just the electronic contribution of the Hamiltonian. Thus, from now the wave-
function of the system will only depend on the electrons position Ψ (r1, r2, . . . , rN).

If we solve Eq. (2.1) using the Hamiltonian Eq. (2.4) we can find the total energy of the
system as:

E =
⟨Ψ|Ĥ|Ψ⟩
⟨Ψ|Ψ⟩

= ⟨Ĥ⟩ = ⟨T̂ ⟩+ ⟨V̂int⟩+
∫
d3rVext(r)n(r), (2.5)

where n(r) is a central magnitude in DFT, the density of electrons, and will be defined
in the next section.

2.2 Hohenberg-Kohn Theorems

From Eq. (2.5) it is appreciated that the energy depend on the many-body wave-function.
Thus we can consider the energy of the many-electron quantum system as a functional of
the wave-function Ψ:

E = F [Ψ] . (2.6)
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A functional is in some sense a generalization of usual functions, where instead of having a
map from a set of numbers to another set of numbers, for example f : R → R, we instead
have a map between a set of functions and a set of numbers, for example F : Cn → R
(where Cn is the set of continuous functions that have continuous first n derivatives and
of course R is the set of real numbers).

Then Eq. (2.6) tells us that there is a functional F that relates state Ψ with its energy.

What we will see in this section is that for the ground-state energy is completely deter-
mined by the density of electrons of the system n:

E0 = G [n] , (2.7)

i.e., that the ground state of the system can be obtained from n. The density of electrons
can be computed as the expected value of the density operator, n̂(r) =

∑
i=1,N δ (r− ri):

n(r) =
⟨Ψ|n̂(r)|Ψ⟩

⟨Ψ|Ψ⟩
= N

∫
d3r2 . . . d

3rN |Ψ(r, r2, . . . , rN)|2∫
d3r1d3r2 . . . d3rN |Ψ(r1, r2, . . . , rN)|2

, (2.8)

where N the total number of electrons. If we need we can take into consideration the spin
of the electrons in this calculation.

But, we need to announce the theorems that guarantee this, the Hohenberg-Kohn theo-
rems.

Theorem 1 (Hohenberg-Kohn first theorem) For any system of particles with in-
teraction in an external potential Vext(r), this potential is determined uniquely (except for
a constant) by n0(r), the ground-state particle density.

Corollary 1.1 All the properties of the system are completely determined given only
n0(r).

Theorem 2 (Hohenberg-Kohn second theorem) It is possible to define a universal
functional for the energy in terms of the density of particles, E [n], valid for any Vext. For
a particular Vext, the ground-state energy of the system, E0, is the global minimum value
of this functional, and the density that minimizes the funtcional is n0(r).

Corollary 2.1 The functional E [n] alone is enough to determine the exact ground-state
energy and density.

The proof of these theorems can be easily found in the bibliography provided in the
beginning of the chapter.

These theorems can be schematized with the following diagram:

Vext(r)
HK⇐= n0(r)

⇓ ⇑
Ψi ({r}) =⇒ Ψ0 ({r})

. (2.9)

This means that if for a given system of particles we have the external potential Vext(r),
and we solve the Schrödinger equation, Eq. (2.1), we can find the solution states Ψi ({r}),
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where one of them will be the ground state Ψ0 ({r}). With Ψ0 ({r}) one can compute the
ground-state density of particles n0(r) using Eq. (2.8), and finally with Hohenberg-Kohn
theorem we are able to obtain again Vext(r) from n0(r).

We can use these theorems to re-write Eq. (2.5) with the functional formalism:

EHK[n] = T [n] + Eint[n] +

∫
d3rVext(r)n(r), (2.10)

where we use EHK to refer that this energy is computed using the Hohenberg-Kohn the-
orems. We can define FHK[n] = T [n] + Eint[n], where we group the functional terms
together.

2.3 Kohn-Sham auxiliary system

Kohn and Sham developed an approach to translate the original problem of a many-body
interacting particles to an auxiliary problem of many-body non-interacting particles.

For this approach we need to make two assumptions:

1. The exact ground-state density can be represented by the ground-state density of
an auxiliary system of non-interacting many-electrons (there is no proof of this for
real systems).

2. The auxiliary Hamiltonian contains the usual kinetic operator and an effective local
potential Veff(r) that acts over an electron located in r.

The following diagram schematizes this approach:

Vext(r)
HK⇐= n0(r)

KS⇐⇒ n0(r)
HK0=⇒ VKS(r)

⇓ ⇑ ⇑ ⇓
Ψi ({r}) =⇒ Ψ0 ({r}) ψi=1,...,Ne(r) ⇐= ψi(r)

. (2.11)

Note that the left part of the diagram is just the diagram in Eq. (2.9), but now using
the Kohn-Sham approach (KS) we can translate the problem into a new problem that
obviously has to verify the Hohenberg-Kohn theorems (here we refer them as HK0) too.
This new problem is a problem of independent particles, thus we can obtain the state
ψi(r) for each particle in the system.

Because the particles are independent, the wave-function of the system can be expressed
with a certain combination (Slater determinant) of wave-functions for each electron ψi.
Thus the density of electrons can be computed in a easier way with:

n(r) =
∑
i

fi |ψi(r)|2 . (2.12)

Then with the Kohn-Sham approach we can re-write the energy functional obtained for
the many-body system through the HK theorems, Eq. (2.10), with the expression:

EKS[n] = Ts[n] +

∫
d3rVext(r)n(r) + EHartree[n] + Exc[n], (2.13)
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where Ts is the kinetic energy of independent particles:

Ts[n] =
1

2

∑
σ

Nσ∑
i=1

∫
d3r |∇ψσ

i |
2 , (2.14)

where the summation over σ is to take into account the spin degeneracy, and the sum-
mation over i is to take into account the Nσ orbitals of ψσ

i (r) with the lowest energy ϵσi ;
Vext is the external potential due to nuclei and other external fields, EHartree is given by
expression:

EHartee =
1

2

∫
d3rd3r′

n (r)n (r′)

|r− r′|
. (2.15)

This term is a mean field approximations where we compute the electron-electron inter-
action as the interaction of one electron with an effective charge that averages the charge
of all the electrons in the system.

Finally, because of the Kohn-Sham approach, we need to add a term Exc, the exchange-
correlation energy, that contains all the interactions that we are not aware of and that
we have not considered as for example the Pauli exclusion principle (consequence of the
statistics of a system of fermions). This term can be expressed as:

Exc[n] = FHK[n]− (Ts[n] + EHartree[n]) (2.16)

The problem is that we are not sure of how to compute this term and we should use some
approximate expressions. This will be discussed in section 2.5.

Finally, we can try to solve the Kohn-Sham auxiliary equations as a variational problem.
After this we will get the Kohn-Sham Schrödinger equations:

(Hσ
KS − εσi )ψ

σ
i (r) = 0, (2.17)

where we can taken into account the spin σ, εi are the energy eigenvalues, and HKS is the
Kohn-Sham Hamiltonian:

Hσ
KS(r) = −1

2
∇2 + VKS(r), (2.18)

with:

VKS(r) = Vext(r) +
δEHartree

δn(r, σ)
+

δExc

δn(r, σ)
= Vext(r) + VHartree(r) + V σ

xc(r). (2.19)

2.4 Self-consistent Khon-Sham equations

A practical way of numerically solving the Kohn-Sham equation is through self-consistency.
With this method we can approach to the ground-state energy and electronic state of a
given system.

The first thing is to start with an initial electron density, n(r) (if we need we can take
into account the electron spin, n↑(r), n↓(r)).
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Now we can compute the effective potential:

V σ
eff(r) = Vext(r) + VHartree[n] + V σ

xc

[
n↑, n↓] . (2.20)

Note that the spin is important for the exchange-correlation potential, but not for the
Hartree part.

With the KS potential we can compute KS Hamiltonian, and then solve KS equations:[
−1

2
∇2 + Veffσ(r)

]
ψσ
i (r) = εσi ψ

σ
i (r), (2.21)

where these equations are just an eigenvalue problem.

Once we have the states for each electron ψσ
i (r) we can recompute the density of electrons

with Eq. 2.12, and as now we are taking into account the spin this expression can be
rewritten as:

nσ(r) =
∑
i

fσ
i |ψσ

i (r)|
2 . (2.22)

And we repeat the process as many times as we want or as many times needed to obtain
converged results to a desired level.

For the electrons states, ψi, we can take the approach of plane waves where we assume
that the state can be expanded as a Fourier Series of plane waves:

ψi(r) =
∑
q

ci,q ·
1√
Ω
exp (iq · r) =

∑
q

ci,q · |q⟩, (2.23)

where ci,q are the expansion coefficients in the basis of orthonormal plane waves |q⟩, q are
vectors of reciprocal space (see section 3.1), and Ω is the volume of the periodic boundary
space, that for crystal will be the unit cell.

This approach is very useful since we know that almost all the periodic functions that
appear in physics can be expanded in a Fourier Series, then since our crystal structures
are periodic we can use this formalism (see section 3.2.2).

Now it is clear how we can implement this to a computer and get energies, states, forces,
stresses, among other physical values, for a desired system.

2.5 Exchange-Correlation functional and Pseudopotentials

In this last section of the DFT chapter we can discuss briefly about the exchange-
correlation functional and pseudopotentials, since they are key concepts for Density Func-
tional Theory simulations.
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2.5.1 Exchange-Correlation functional

As we have explained, in principle we do not know about the form of Exc[n], since we
use this term to add all the physical interactions that we are not aware of. But we are
lucky enough because there are some approaches that are good enough to do practical
simulations with correct results.

This term can be expressed as:

Exc[n] =

∫
drn(r)ϵxc ([n], r) , (2.24)

where ϵxc is the energy per electron at point r that depends on n(r, σ) near the neighbor-
hood of r, and can be computed with:

ϵxc ([n], r) =
1

2

∫
d3r′

n̄xc (r, r
′)

|r− r′|
, (2.25)

here n̄xc is the coupling-constant-averaged hole with expression:

n̄xc (r, r
′) =

∫ 1

0

dλnλ
xc (r, r

′) , (2.26)

where finally, nxc (r, r
′) is the exchange-correlation hole around an electron at r, and it

can be determined with (without taking into consideration the spin, the expression with
the spin can be found in the provided bibliography):

nxc (r, r
′) = N(N − 1)

∫
dr3 . . . drN |Ψ(r, r′, r3, . . . , rN)|2 . (2.27)

There are lots of approaches to approximate Exc[n], but there are two of them that we
are especially interested in because their simplicity and usability, the Local Spin Density
Approximation (LSDA or LDA) and the Generalized-Gradient Approximations (GGAs).

In LSDA we consider solids as the limit of an homogeneous gas, then the exchange-
correlation energy is computed with:

ELSDA
xc

[
n↑, n↓] = ∫ d3rn(r)ϵhomxc

(
n↑ (r) , n↓ (r)

)
, (2.28)

where ϵxc is for the homogeneous gas situation.

While GGAs are improved methods that goes further the local approximation and consider
the gradient of the denisity:

EGGA
xc

[
n↑, n↓] = ∫ d3rn(r)ϵxc

(
n↑, n↓,

∣∣∇n↑∣∣ , ∣∣∇n↓∣∣ , . . . ) . (2.29)
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2.5.2 Pseudopotentials

Instead of taking into account all the electrons of the atoms we can work with the ones
in the valence band (i.e., those which are involved in chemical bonding) and replace the
others by an effective potential, this is the concept of pseudopotential.

This is not necessarily an incorrect approach since the most interior electrons of atoms are
strongly bonded with the nuclei and it makes sense to consider all as an effective charge.

It is clear that the election of pseudopotentials is not unique for a given atom since we
can take less or more electrons depending on the problem we are facing.
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3 Solid State Physics basics

Solid state matter [18, 19] consists of large number of atoms linked between them by
different interactions generating a relatively stable structure. The main difference between
fluids and solid matter is just the fact that atoms in fluids can move freely, thus the
distance between a given particle i and another particle j changes significantly over time
in a non-periodic manner. While in solid state, as we have explained, the physical and
chemical interactions involved between the atoms restrain the movements of the ions, and
at T = 0 K we can think of the ions as fixed at equilibrium positions. This is not strictly
true when T > 0 K, since as we will see in section 3.3 atoms in materials oscillate around
their equilibrium positions; however, since these fluctuations in general are small compared
to the distance between atoms, such an approximation turns out to be reasonable in many
cases.

In solids, ions are arranged according to specific spatial patterns structured in a specific
way. Depending on how ions are arranged we can differentiate between amorphous and
crystal materials. In an amorphous material the ions are disordered, in contrast with
crystal materials where there is a given configuration of ions that it is repeated through
space. This last type of solid state materials are easier to study since we can use the
periodicity of the structure to simplify our calculations.

The purpose of this section is to remember the basic concepts of crystal materials, and our
starting point should be to give a brief mathematical description of crystal periodicity.

3.1 Crystal structures

The basic structural unit of a crystal is the unit cell [20], which upon recursive repetition
will generate an infinite periodic structure.

The periodic structure encompasses two elements, a lattice and an atomic basis. A lattice
is a set of points in the space such as can be defined as the sum of a set on linearly
independent vectors, that are called lattice vectors. In the 3-dimensional case they are
usually denoted by a1, a2 and a3, then any point in the lattice is described with a vector
R:

R = n1a1 + n2a2 + n3a3, (3.1)

with n1, n2, n3 ∈ Z. In general, the selection of a1, a2 and a3 is not unique, and different
combinations of lattice vectors are valid.

The atomic basis is an atom or atoms that are repeated over the points of the lattice.
Then a crystal material can be thought as some atoms of the same or different chemical
species repeated over a set of points that compound the lattice. Then we can refer each
object in the unit cell with respect the lattice points, the basis.

In 3D there are fourteen lattice types, grouped in seven different crystal structures: cubic,
tetragonal, orthorhomic, monoclinic, hexagonal, triclinic and rhombohedral. In addition
for each of these groups there are different possible symmetries, i.e., a transformation that
maintains the same structure. In total we have 230 different groups of symmetry [21].
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Another important concept in the study of crystal solids is the concept of reciprocal space.
For a given direct lattice of points R, G is a point of the reciprocal space if and only if
eiG·R = 1. We can think of the reciprocal lattice as the Fourier transform of the direct
lattice.

The reciprocal lattice vectors, b, and the lattice vectors fulfill the relation:

ai · bj = 2πδij, (3.2)

hence we can write: 
b1 = 2πa2×a3

a1·(a2×a3)

b2 = 2πa3×a1

a1·(a2×a3)

b3 = 2πa1×a2

a1·(a2×a3)

. (3.3)

The Brillouin zone is the equivalent of the unit cell but in reciprocal space. The first
Brillouin zone is the locus of points that are more closer to G = 0 than to any other
point of the reciprocal lattice. One easy algorithm to find the Brillouin zones is to draw
perpendicular bisector between G = 0 and the rest of reciprocal lattice points k, the area
delimited by bisectors that contains G = 0 is the first Brillouin zone.

The reciprocal lattice formalism is very useful because it simplifies our models for crystal
solid materials, since we only need to take into account electrons with k within the first
Brillouin zone.

3.2 Electrons in a solid

In this subsection we are interested in describing the behaviour of the electrons in solids
[20], and how this helps us to distinguish between conductor materials (metals) and in-
sulators.

3.2.1 Nearly-free electron model

We can start studying the simplest situation where the electrons in our material are free to
move, the free electron model. In this model the Hamiltonian is given by the kinetic energy
of the electrons H = p2

2me
, and we just have to solve Eq. (2.1) using this Hamiltonian. The

energy solutions are well known and depend on k:

E(k) =
ℏ2 |k|2

2me

. (3.4)

But this model is too simple to encompass the more complex behaviours that are presented
in solids as the insulator effect. We can study a model that is slightly more realistic
taking into account the potential generated by the ions of the material. Because our
materials of interest have crystal structure, the potential created by the ions will be
periodic, V (r) = V (r+R), with R a vector of the lattice. Any function that presents the
same periodicity that the crystal lattice can be described as a series of plane waves, eiG·r.
Now our Hamiltonian is H = p2

2me
+ V (r).
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Using perturbation theory we can get a first order solution for this model:

E(k) = E0(k) + V0, (3.5)

where V0 is a constant, and E0 is the solution of the free electron model, the solution
obtained in Eq. (3.4). First order approximation just adds an energy shift in the free
electron solution, thus we need to go to higher orders to get more interesting solutions.

At second order, the solution is:

E(k) = E0(k) +
∑

k′=k+G;G̸=0

|⟨k′|V |k⟩|2

E0(k)− E0(k′)
, (3.6)

with:

⟨k′|V |k⟩ = 1

L3

∫
drei(k−k′)·rV (r). (3.7)

A detailed description of these computations and results is completely out of the scope of
this project, and for us will be enough to know that Eq. (3.6) gives us the energies that
the electrons can have as a function of their wave vector k.

A different, and more accurate, way of estimating the energy of electrons in a crystal
is with first-principles methods like density functional theory, which has been briefly
explained in the previous chapter. In this latter case, however, all the electron-electron
and electron-ion interactions are explicitly taken into account.

3.2.2 Bloch’s Theorem

The Bloch’s theorem is presented next without a proof (this can be found, for instance,
in [20]), which takes full advantage of the periodicity of crystals and reciprocal space
representation.

Theorem 3 (Bloch’s theorem) For an electron in a periodic potential with k, its state
can be expressed as:

ψα
k(r) = eik·ruαk(r), (3.8)

where the super index α denotes that we can have degeneration for k, and where uαk is
periodic in the unit cell and in a way that is possible to take k within the first Brillouin
zone.

3.2.3 Band gap and semiconductor materials

From Eq. (3.6) one can find the energies of the electrons, thus we can study the density
of states in the system with a given energy. This density of the states can also be found
with the determined energies with DFT calculations and the electron density from Eq.
(2.12). We will explain how we can compute this in section 4.2.5.

In the ground state the electrons will fill the less energetic states gradually (remember
that electrons are fermions, thus they have to obey the Pauli exclusion principle, this
means that electrons can not form Bose-Einstein condensates and that in the ground state
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they have to fill excited energy states if the less energetic states are already occupied)
without letting empty energy states. The most energetic state occupied is the Fermi level,
characterized by EF .

The main difference between insulator and conductor materials is that a conductor ma-
terial (or metal) is a material with available states above EF , then electrons can access
that states with a little energy. But for the insulator materials we need the concept of
band gap, that is the energy difference between two separated regions of occupied states,
the valence and conduction band. Insulator materials have EF level between these two
regions, i.e., energy difference between the highest-energy occupied state (in valence band)
and the lowest-energy unoccupied state (in conduction band).

We can visualize this in Fig. 3, where we can clearly see that insulators have their valence
band completely full and in order to have electrons in the conduction band they need to
get (and a variation of k if the we have indirect band gap).

EF
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band gap

Insulator/semiconductor

Figure 3: Schematic representation of the density of states occupied by electrons in
function of energy for a metal (top) and insulator/semiconductor (bottom) . The grey

stripe below the curves represent the occupied states, and EF is the Fermi level.

Finally, both insulators and semiconductors have the valence band completely fulfilled and
the difference is that the band gap for semiconductors is small enough to be sorted under
some circumstances (for example, an electron-hole pair can be generated by absorbing a
photon (and a phonon with k for indirect gap) of that energy). Then, semiconductors can
behave as conductor materials under these circumstances.

Semiconductor materials [22, 23] present a band gap Egap ≈ 0.5− 3.0 eV. Some classical
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examples of semiconductor materials are silicon with ESe
gap = 1.1 eV, [24], or germanium

with EGe
gap = 0.67 eV, [25]. An example of material with bigger band gap and that is

considered insulator is diamond with Ediamond
gap = 5.5 eV, [26].

We can also distinguish between semiconductors with direct or indirect gap if the min-
imum of the conduction band and the maximum of the valence band are in the same
or in different k, respectively. In direct semiconductors the process of absorbing photons
and promote electrons to conduction band does not necessarily involve interacting with
phonons, in contrast to indirect semiconductors (due to conservation of the momentum,
given by k). On the other hand, once a photo-excited electron-hole pair is created recom-
bination is more difficult to occur in indirect semiconductors (also in this case due to the
required involvement of phonons).

3.3 Phonons. Thermal properties

As we explained in the beginning of the section the ions are not necessarily fixed in a
given position but they can fluctuate around equilibrium positions at finite temperature.
In fact, these ions will move generating oscillations modes with angular frequencies ω,
and we can understand these oscillations as particles (or more specifically quasi-particles
since they are not really particles but behave as if they were) called phonons [27]. We will
see that phonons help us to compute thermodynamic variables of the system.

3.3.1 Lattice vibrations

In order to illustrate the concept of phonons we will provide some explanation for an
idealized, non-real, 1D solid, since in this case the solution to the N-body oscillatory
problem can be analytically worked out, in contrast to the real 3D case.

In 1D the potential ϕ(x) that an ion located in x = a feels can be expanded as a Taylor
series:

ϕ(x) = ϕ(a) +
ϕ′(a)

1!
(x− a) +

ϕ′′(a)

2!
(x− a)2 + . . . , (3.9)

that in the harmonic approximation we can write it as:

ϕ(x) ≈ ϕ′′(a)

2
(x− a)2, (3.10)

where we have not written ϕ(a) since it is a constant that only adds a shift and is no
relevant for forces determination. From here one can obtain the force constant γ = ϕ′′(a).
The first derivative term vanishes since we are expanding around a minima.

For a single ion the movement under this potential is described by:

M
d2x

dt2
= −γx, (3.11)

where M is the mass of the ion.
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Now if we consider that we have an infinite number of atoms (chain of atoms, since we
are in the 1D situation), we will have a system of coupling dynamical equations, one for
each atom, for a given atom n the equation is:

M
d2un
dt2

= −γ (un − un−1) + γ (un+1 − un) , (3.12)

the solution of this system is a set of plane waves with with angular frequency ω, un(t) =
uei(kan−ωt). And the angular frequency depends on k:

ω(k) = 2

√
γ

M

∣∣∣∣sin(ka2
)∣∣∣∣ . (3.13)

Note that a is the lattice parameter of the unit cell. All the missing steps can be found
in the provided bibliography in the beginning of the chapter and in the beginning of the
section 3.3.

In Fig. 4 we can see the shape of ω(k) (bottom curve), it receives the name of acoustic
branch because the similarity with sound waves.

Now we can complicate a little bit more this model an add a second specie of atoms in
the chain, then for each unit cell we have the two types of atoms. Now the dynamical
equations will be more complex:{

M1
d2un

dt2
= −γ (2un − vn−1 − vn)

M2
d2vn
dt2

= −γ (2vn − un − un+1)
, (3.14)

where un denotes atom n of the first chemical specie, and vn denotes atom n of the second
chemical specie.

Again the solution are plane waves, but now ω(k) can take two values:

ω2 = γ

(
1

M1

+
1

M2

)
±

[(
1

M1

+
1

M2

)2

− 4

M1M2

sin2

(
ka

2

)] 1
2

. (3.15)

This means that we have two branches the same acoustic branch that we got for one atom
in the unit cell and an optical branch (Fig. 4).

These branches are called phonon dispersion curves, since as we will see a little bit further
these oscillations are phonons. The acoustic branches involve in-phase atomic displace-
ments, whereas optical branches involve anti-phase atomic displacements.

Remember that we have assumed an infinite chain of atoms, this is no realistic since real
materials contain a finite number of atoms, to solve this we can take as an approximation
periodic boundary conditions. As consequence of this restriction k is discretized, k = 2π

aN
m,

where m is an integer.

Now we can generalize this to the 3D situation with a number n of atoms in the unit
cell. The dynamical equations will be very complicated, but we can guarantee that the
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Figure 4: Schematic representation of the acoustic and optical branch for a unit cell with
with two different atoms in the first Brillouin zone (delimited by vertical dashed lines) in

1D.

system will have 3 acoustic branches and 3n−3 optical branches (one for each particle and
spatial component). The phonon dispersion curves will be more complex, as a reference
we can take a look at Fig. 6. In pure 1D solid only longitudinal modes are possible while
in realistic 3D solids transversal modes also exist

3.3.2 Free energy and thermodynamic properties

With phonons we can understand the thermal properties of the material, since one can
use statistical physics formalism to find the free energy of the system. In this situation we
have a collection of quantum oscillators characterized by their angular frequencies, thus
we can compute the free energy of the system [28] with:

F = kBT
∑
n

ln

(
2 sinh

(
ℏωn

2kBT

))
, (3.16)

where the summation is over all the oscillations modes of the material, ωn.

This computation can be simplified taking into account the first Brillouin zone:

F =
kBTV

(2π)2

∫
BZ

dk
∑
s

ln

(
2 sinh

(
ℏωk,s

2kBT

))
, (3.17)
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where V is the volume of the first Brillouin zone and s runs over the 3n phonon energy
levels obtained at every k-point.

Once we know the free energy of the system and the energy of the structure that we can
determine with DFT, the rest of the thermodynamical variables are easy to compute [29].

3.4 Optical properties

The optical properties of a given material can be computed from the dielectric tensor, ε,
with elements εij where i denotes the spatial direction of interest while j is the electric
current propagation direction, thus in the more general situation one could expect nine
different components for this tensor. Despite this, if we assume that the material does not
present special spatial directions and therefore it is isotropic, we only need the diagonal
elements of εij, and all the diagonal elements will have the same value, then we need just
one element, ε.

It is important to note that this value will depend on the angular frequency of the light
that interacts with the material, ε(ω), and in general it is a complex value with real and
imaginary part:

ε(ω) = ε1(ω) + iε2(ω), (3.18)

where it is clear that ε1 and ε2 are the real and imaginary part of the dielectric function.

Now from these two real functions it is very easy to compute the different optical properties
of the material [30].

The refractive index can be computed with:

n(ω) =

(√
ε21(ω) + ε22(ω) + ε1

2

) 1
2

. (3.19)

While for the extinction coefficient we can use:

κ(ω) =

(√
ε21(ω) + ε22(ω)− ε1

2

) 1
2

. (3.20)

With n(ω) and κ(ω) we can determine the reflectivity of the material:

R(ω) =
(n− 1)2 + κ2

(n+ 1)2 + κ2
. (3.21)

Finally, the absorption coefficient can be obtained from:

α(ω) =

√
2ω

c

(√
ε21(ω) + ε22(ω)− ε1

) 1
2

. (3.22)
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4 Methodology and simulations

In this chapter, we provide a brief description of the methodology used to find stable phases
for the studied material and characterize some of their properties. A little description of
some of the software simulation packages is also provided.

4.1 Software used for computational simulations

4.1.1 VASP

VASP (Vienna Ab initio Simulation Package) [31, 32, 33] is a package for doing ab initio
simulations of solids, liquids, molecules, surfaces, nanoparticles, among others. It uses
DFT methods, but also is possible to use other approaches as many-body perturbation
theory.

In order to do a simulation with VASP we need to provide four input files:

1. POSCAR file: here is where is specified the lattice geometry and the ions positions.

2. POTCAR file: this file contains the pseudopotentials (see section 2.5) values for
the atoms that we are interested in simulate.

3. KPOINTS file: here we have to specify the k points used to sample the first
Brillouin zone.

4. INCAR file: this is the main file where the parameters and options for the simu-
lation are delcared. There are several number of parameters that we can adjust to
produce different types of calculations and with more or less accuracy.

After the simulation the software will output different files depending on what we are
computing. For example, if we are doing a relaxation of the crystal structure one of the
output files will be a file named CONTCAR with the same information that POSCAR
file but with the new ions positions.

Some of the results that we can obtain with VASP simulations and that we have simulated
in our project are energies, forces, density of energy states, dielectric tensor, relaxed
structures, among others.

4.1.2 Phonopy

Phonopy [34, 35] is an open source software package to do phonon calculations of materials
and obtain thermal properties.

As we will see in the next section (section 4.2.3) to obtain the phonon dispersion curves
we need to take the structure of interest and produce displacements in the ions, with
this displacements we can do DFT simulations and obtain the forces, and with these
forces we can obtain the phonon angular frequencies. With Phonopy we can produce
this displacements in a easy way and use the symmetry of the phase group, since more
symmetric phases need less displacements because some of the forces are equal.
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With Phonopy we can also take into account the thermal expansion and do quasi-harmonic
computations. The thermal properties are computed using the approach described in
section 3.3.2.

4.1.3 VASPKIT

VASPKIT [36] is an open source software to do analysis of raw data obtained from VASP
simulations.

With this package we are able to compute many things, some of the utilities that we
have used are: obtain the structure, symmetry group and lattice parameters, obtain the
ideal path in the reciprocal space for a given structure, produce slightly displacements in
the ions of the structure, obtain the optical properties from the dielectric tensor, among
others.

4.1.4 VESTA

VESTA [37] is a 3D visualization program that can represent (among other functionalities)
the ions positions from the POSCAR file.

The different structure representations in Fig. 5 have been obtained using this software

4.2 Materials modelling

4.2.1 Study of the energy convergence

The first thing we should do before starting with the modelling and characterization of a
given material is a study of the convergence of the calculated energy with respect to the
number of reciprocal space points and the number of terms that we take in the Fourier
Series expansion of the plane wave approach, Eq. (2.23).

If we take more terms in the plane waves expansion or more k in the reciprocal space
the simulation will be more accurate, but the computational time cost will also increase.
Since the computation times for these sort of simulations are very high (these simulations
can take between minutes and several days in a parallelized computer with hundreds or
thousands of CPUs) we have to be sure to take values that give enough accurate results
but that are not very time consuming.

A good accuracy in energy for our simulations is around 0.1 meV.

4.2.2 Relaxation of the structure and a first check of stability

Once we have determined the suitable technical parameters for calculating energies and
forces explained in section 4.2.1 we are ready to start searching stable phases for the
material.

We have to start with a structure for our material, this structure can be one of the expected
structures by the experimental results, a structure obtained with structure prediction
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software (see section 4.3), or any structure that we consider as possibly energetically
competitive.

Now we have to relax this structure, this means that we should determine the atomic
arrangement compatible with the imposed symmetry that renders the lowest possible
energy. Then we are dealing with a minimization problem. We call this process ionic
relaxation. The most usual approach is to use the conjugate-gradient algorithm [38].

We are interested in getting smaller energies because is easy to understand that less
energetic phases are more probable than more energetic ones. We can think of it as an
3n-dimensional space where n is the number of atoms in the unit cell, in this space each
point is a possible structure of the material. Then we can map this space to an energy
value, R3n → R, generating an energy hyper-surface. The minimum of this surface will
correspond to meta-stable states (local minimum), while the least energetic state (global
minimum) corresponds to the ground-state of the material.

Once the ionic relaxation has finished we can do a first verification of the stability of the
resulting structure. For this we can do a phonon determination (see section 4.2.3) in the Γ-
point (the center of the Brillouin zone), this is the most symmetric point in the reciprocal
space. If as a result we get that there are phonons with imaginary frequencies this means
that the structure is not stable. In this situation, we can take the eigenvector of the
imaginary phonon mode with higher energy in absolute value and displace the atoms in
the unit cell according to its components. With this we are helping the structure to move
to a minima in the energy hyper-surface. While if we do not get imaginary frequencies
this means that the structure is a good candidate to be stable or meta-stable phase.

We should repeat this process until we get a structure without imaginary frequencies in
Γ, and the other points of the reciprocal space.

This ionic relaxation can be done taking into account the structure and group of symme-
tries or not. In the first case during the ionic relaxation we will maintain the symmetries
of the phase and the relaxed material will have the same structure and group of sym-
metries. While in the second case after an ionic relaxation step the phase structure and
symmetries could be different. This second case will be ideal for situations where we are
not able to find phases with the desired structure and symmetries (maybe because they
do not exist).

4.2.3 Computation of the phonon band dispersion

Once we have a good candidate to stable phase we should compute phonon frequencies
for all the points of the reciprocal space.

In order to do this we can compute the dynamical matrix [28, 39] using the results of the
DFT simulation:

Dsα,tβ(k) =
1√
MsMt

∑
l

Φlsα,l′tβ exp [ik · (Rl′ + τt −Rs − τs)] , (4.1)

where s refers to the vibration mode, k is the wave-vector, t is to label the ions, l is
for the unit cell, α and β are the Cartesian components, Φlsα,l′tβ is the force-constant
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matrix (this is what we can get from the DFT simulation), and Rl′ + τt is the equilibrium
position of atom t in cell l. The vibration frequencies ωks can be found as the eigenvalues
of Dsα,tβ(k). For an extensive explanation on how to compute numerically the Eq. (4.1)
we refer to [28].

Once we have calculated the phonon frequencies for each point of the reciprocal space,
we can represent them by considering a specific reciprocal space path involving the most
interesting points in the reciprocal space (high symmetry points), but for different struc-
tures and symmetries the shape and the high symmetry points of the reciprocal space are
different, then we need a method to determine the optimal path in the k-space for each
phase. The followed approach is the developed in [40].

Finally, with these phonon frequencies we are able to compute the thermal properties of
our studied phase (see section 3.3) using the harmonic approximation. Of course these
results will only make sense when the structure does not have imaginary frequencies.

The quasi-harmonic approximation [41] is a correction of the harmonic approximation
where we also take into account that the volume of the structure varies with the tempera-
ture. By performing DFT phonon calculations at several different volumes, we can apply
this correction and obtain more correct Gibbs energies.

4.2.4 Use of different functionals

All the computations done until now should be re-done using other exchange-correlation
functionals (see section 2.5).

Remember that we are not sure about the form of the exchange-correlation part, thus
there are many different functionals (LSDA or GGAs) such as PBE, PBEsol, SCAN or
LDA [42, 43, 44], for each of this potentials the results will be different since they has
different expressions, but we expect that if everything is right the results has to be similar.
PBE and PBEsol (PBEsol is an improved version of PBE for solids) are generalized-
gradient approximation functionals (see section 2.5), these functionals in contrast with
LDA consider the gradient of the density. SCAN is a meta-GGA functional since it also
includes the second derivative of the electron density.

To use different potentials provide slightly different results for the structural, energy and
optoelectronic properties of interest. By comparing to experimental data, or benchmark
data obtained with more accurate computational methods, it can decided which functional
best describes the system of interest. is a good practices to be sure that everything is going
well. Other possibility is compare the results for each functional.

The use of different functionals for the computations explained in sections 4.2.5 and 4.2.6
is also recommended.

4.2.5 Electronic structure and band gap determination

One of the properties of semiconductor materials we are more interested in is the band
gap. With it we can be sure that the material is a semiconductor and to know its suitability
in energy materials applications.
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If we know the density of states (DOS) the band gap can be computed easily (see section
3.2.3) as the difference energy between the last populated states in the valence band and
the first in the conduction band. Then, the density of states (DOS), n̄ (ϵi) for a pin of
energy, can be computed during a DFT simulation of the electronic structure with the
expression [45]:

n̄ (ϵi) =
N (ϵi)−N (ϵi−1)

∆ϵ
, (4.2)

where ϵi is pin of energy of the studied energy range, ∆ϵ is the distance between two pins,
and where N (ϵi) is the integrated DOS and can be computed with:

N (ϵi) =

∫ ϵi

−∞
n (ϵi) dϵ. (4.3)

Finally, the band gap, Egap, can be easily computed with:

Egap = ϵcbmin − ϵvbmax, (4.4)

where ϵcbmin and ϵvbmax are respectively the first populated energies of the conduction band
and the last of the valence band.

For this type of calculations and for the optical ones (see section 4.2.6) is higly recom-
mended [46, 47] to use hybrid functionals [48] (where the exchange-correlation energy is
the exchange-correlation of a GGAs approach plus a Hartree-Fock exchange energy), and
take into account the spin-orbit coupling effect (SOC) [49]. The physical reason of this is
that we want to minimize electronic self-interaction errors and to take into consideration
electronic quantum relativistic effects that become increasingly more important as the
radius of the atom increases.

4.2.6 Determination of the optical properties

The last thing we are interested in compute in this work are the optical properties of
the materials, again because we are interested in use this materials in optoelectronic
applications.

Remember from section 3.4 that to determine the optical properties we just need the
dielectric tensor as function of angular frequency or energy.

We can compute this tensor through a DFT simulation using the method explained in
[50]. This method tells us that the imaginary part of the tensor (now we will denote the
imaginary part by ε(2) and the real part by ε(1)) can be computed with:

ε
(2)
αβ(ω) =

4π2e2

Ω
lim
q→0

1

q2

∑
c,v,k

2ωkδ (εck − εvk − ω)× ⟨uck+eαq| uvk⟩ ⟨uvk| uck+eβq

〉
, (4.5)

where α and β are the Cartesian components, c and v refer to conduction and valence
band states, uck is the cell periodic part of the orbital at k, and Ω is the unit cell volume.

While the real part is computed with:

ε
(1)
αβ(ω) = 1 +

2

π
P

∫ ∞

0

ε
(2)
αβ(ω

′)ω′

ω′2 − ω2 + iη
dω′, (4.6)
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where P is used for denote the principle value and η is a complex shift.

4.3 Crystal structure prediction

Crystal prediction of new phases for a given material is a very hard problem [51], since
the space of possible phases is huge and the materials simulations are computationally
expensive. The crystal structure prediction approaches help us to find possible candidates
to be stable phases for a given material, with reasonable computational times. For some
materials we may not have an insight of the possible structure that they could have, with
this methods is easy to fins some candidates in a fast way.

There are several software packages to find interesting structures, to mention some of
them: AIRSS [52], USPEX [53] or CALYPSO [54].

In this work we have used a new approach, MAGUS [55, 56]. This package software uses
machine learning methods to find a large amount of possible candidates to be stable
phases and check it with VASP calculations, this can be done in few computational time.

To understand well how this method works is out of the scope of this project and the
interested reader is encouraged to consult the provided bibliographic references.
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5 Results

In this chapter we will explain the different results that we have obtained for the repre-
sentative anti-perovskite halide compound Ag3SBr by using computational first-principles
methods based on density functional theory.

5.1 Crystal structures

5.1.1 Initial structures: phonons and crystal symmetry breaking

Our first hint at the beginning of our simulations was that the MNT-Solar group at UPC
had synthesized and characterized Ag3SBr and they observed a cubic phase with space
group Pm3m [13].

Thus we decided to start relaxing a cubic structure with this group of symmetries and
with five atoms in the unit cell (three silver atoms, one of bromine, and another one of
sulfur). The POSCAR file with the positions for the ions was obtained from Materials
Project data set [57]. We were not able to found a stable phase with this structure, thus
we allowed for ionic relaxations without maintaining the symmetries.

After several ionic steps we found a triclinic structure with group of symmetry P1, that
at Γ-point does not present imaginary frequencies. It is important to emphasize that this
structures has no symmetries (just the identity) in contrast with the initial cubic that is
highly symmetric.

As it is shown in section 5.2, this phase presents some imaginary phonons at some high-
symmetry reciprocal space points. Therefore, we constructed a supercell in order to be
able to break symmetries by following the eigen-vectors of such imaginary phonons and
subsequently relax the structure in the search of a lower energy phase. We found a triclinc
phase with symmetries P1 and unit cell of fourty atoms is stable at T = 0 K. This were
good news since an experimental study had previously reported this phase [12].

As this phase contains a large number of atoms in the unit cell and no symmetries at
all the computations could take longer than more symmetric phases or with less atoms
in unit cell, thus we decided to use FINDSYM software [58] to find very similar phases
but with increased symmetry and possibly smaller number of atoms in the unit cell. This
package is capable of finding from a given phase other phases with other symmetries. With
this we found a trigonal phase with space group R3 and twenty atoms in unit cell. After
performing several computations we determined that both phases the trigonal and triclinic
were the same phase, so we decided to characterize the trigonal since the computations
would be faster.

Finally, we decided to study and compute the properties of three of these phases, the
cubic Pm3m and the triclinic P1 (with 5 atoms in the unit cell) because they have been
experimentally reported in the literature, and the trigonal R3 since it is stable structure.

5.1.2 Adding structures: crystal structure predictions methods

Using MAGUS method for crystal structure prediction [55, 56] we were able to find twenty
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new possible stable structures. We computed their energies and studied those with less
energy than our trigonal stable phase. The results are presented in the next section 5.1.3.

5.1.3 Structures results

The energies, structures and space groups are showed in this section for the three found
phases, the MAGUS obtained phases, and an orthorhombic phase from Materials Project
data set that we will use to check if our determined phases could be chemically stable or
not.

Symmetry Space Group E0 (eV/f.u.)

Cubic P213 -16.905
Orthorhombic P212121 -16.826

Cubic P213 -16.814
Trigonal R3 -16.783
Trigonal P32 -16.779
Triclinic P1 -16.778

Orthorhombic P212121 -16.775
Orthorhombic Pna21 -16.765

Orthorhombic* Cmcm -16.621
Cubic Pm3m -16.367

Table 1: Energies computed with PBEsol functional for the four predicted phases (in
bold, and * for the reference phase in material project), and the six less energetic phases

found with MAGUS, ordered from less to more energetic.

Symmetry Space Group E0 (eV/f.u.)

Cubic P213 -14.832
Orthorhombic Pca21 -14.794
Orthorhombic P212121 -14.790
Orthorhombic Pnma -14.755

Cubic P213 -14.753
Monoclinic P21/c -14.747
Trigonal R3 -14.696
Triclinic P1 -14.692

Orthorhombic* Cmcm -14.570
Cubic Pm3m -14.424

Table 2: Energies computed with PBE functional for the four predicted phases (in bold,
and * for the reference phase in material project), and the six less energetic phases

found with MAGUS, ordered from less to more energetic.

In Table 1, 2, 3 and 4 we can find the energies per formula unit (f.u.) and structures
computed for each phase (listed from the least energetic to the most energetic) for four
different exchange-correlation functionals, PBEsol, PBE, SCAN and LDA respectively.
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Symmetry Space Group E0 (eV/f.u.)

Cubic P213 -124.229
Orthorhombic P212121 -124.139

Cubic P213 -124.128
Trigonal R3 -124.117
Trigonal P32 -124.112
Triclinic P1 -124.109

Orthorhombic Pna21 -124.106
Tetragonal P41 -124.094

Orthorhombic* Cmcm -123.977
Cubic Pm3m -123.831

Table 3: Energies computed with SCAN functional for the four predicted phases (in
bold, and * for the reference phase in material project), and the six less energetic phases

found with MAGUS, ordered from less to more energetic.

Symmetry Space Group E0 (eV/f.u.)

Cubic P213 -18.803
Orthorhombic P212121 -18.736

Cubic P213 -18.712
Trigonal R3 -18.689
Trigonal P32 -18.684
Triclinic P1 -18.683

Orthorhombic Pna21 -18.666
Monoclinic P21/c -18.653

Orthorhombic* Cmcm -18.469
Cubic Pm3m -18.139

Table 4: Energies computed with LDA functional for the four predicted phases (in bold,
and * for the reference phase in material project), and the six less energetic phases

found with MAGUS, ordered from less to more energetic.

We cannot compare the values of energy for a phase obtained with two different function-
als, since each functional refers the total energy to a different origin, but we can compare
the energy differences between phases provided by them.

For the four functionals the lowest energy phase is a cubic structure with symmetries
P213 that from now we will consider as the ground-state of the Ag3SBr.

For PBEsol, SCAN and LDA we have computed that there are two more phases with
an energy between the energy of the ground-state and the energy of the trigonal R3,
an orthorhombic phase with space group P212121 and another cubic P213. For PBE
functional we have obtained three phases between the trigonal and the ground-state, but
since these do not appear in the energy ranking obtained with the other three potentials,
we disregard them for the subsequent computationally intensive analysis.
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Thus, for the subsequent and computationally more intensive calculations, we decided to
study these six phases:

• Cubic P213 (I), the ground-state.

• Orthorhombic P212121.

• Cubic P213 (II).

• Trigonal R3.

• Triclinic P1.

• Cubic Pm3m.

In Table 5 we can see the number of atoms that these phases have in their unit cell. We
can see that the maximum number of atoms in the unit cell is 20, which is not a big
number to be able to perform the next simulations.

Phase # atoms per unit cell

Cubic P213 (I) 20
Orthorhombic P212121 20

Cubic P213 (II) 20
Trigonal R3 20
Triclinic P1 5
Cubic Pm3m 5

Table 5: Number of atoms per unit cell for each of the six studied phases.

We are interested in determining the formation energy of the ground-state to know if the
structure could be chemical stable or not. If this energy is a large positive number the
structure will not be chemically stable, but if this energy is negative, or positive with a
small value (since in this case temperature effects may end up making the corresponding
free energy negative), the structure will be chemically stable.

For this type of calculations, we can use the values provided by Materials Project. For an
orthorhombic Cmcm (see Table 1) with determiend energy (with PBEsol) E = −16.621
eV the formation energy per atom is +0.08 eV. From this we can determine that the
ground-state with energy E = −16.905 eV should have a formation energy per atom of
+0.023 eV. This value is small enough to consider that the phase is chemically stable.

In Table 6, 7, 8 and 9 we present the lattice parameters of each phase computed with the
functionals PBEsol, PBE, SCAN and LDA, respectively. Comparison with experimental
data is not possible here since most of the present phases have not been previously reported
in the literature. The obtained results are similar for each exchange-correlation functional,
with differences of few 0.1 Å for lattice constants and few degrees for lattice angles.
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Phase a (Å) b (Å) c (Å) α (◦) β (◦) γ (◦)

Cubic P213 (I) 7.586 7.586 7.586 90.000 90.000 90.000
Orthorhombic P212121 4.518 4.531 21.152 90.000 90.000 90.000

Cubic P213 (II) 7.584 7.584 7.584 90.000 90.000 90.000
Trigonal R3 8.140 8.140 8.140 109.075 109.075 109.075
Triclinic P1 4.728 4.729 4.727 90.346 90.404 89.580
Cubic Pm3m 4.793 4.793 4.793 90.000 90.000 90.000

Table 6: Lattice parameters after relaxation with functional PBEsol for each of the six
studied phases.

Phase a (Å) b (Å) c (Å) α (◦) β (◦) γ (◦)

Cubic P213 (I) 7.791 7.791 7.791 90.000 90.000 90.000
Orthorhombic P212121 4.643 4.649 21.630 90.000 90.000 90.000

Cubic P213 (II) 7.788 7.788 7.788 90.000 90.000 90.000
Trigonal R3 8.349 8.349 8.349 108.848 108.848 108.848
Triclinic P1 4.860 4.861 4.860 90.958 90.957 89.030
Cubic Pm3m 4.912 4.912 4.912 90.000 90.000 90.000

Table 7: Lattice parameters after relaxation with functional PBE for each of the six
studied phases.

Phase a (Å) b (Å) c (Å) α (◦) β (◦) γ (◦)

Cubic P213 (I) 7.685 7.685 7.685 90.000 90.000 90.000
Orthorhombic P212121 4.552 4.612 21.374 90.000 90.000 90.000

Cubic P213 (II) 7.688 7.688 7.688 90.000 90.000 90.000
Trigonal R3 8.238 8.238 8.238 108.956 108.956 108.956
Triclinic P1 4.803 4.783 4.789 90.380 90.820 89.116
Cubic Pm3m 4.839 4.839 4.839 90.000 90.000 90.000

Table 8: Lattice parameters after relaxation with functional SCAN for each of the six
studied phases.

Phase a (Å) b (Å) c (Å) α (◦) β (◦) γ (◦)

Cubic P213 (I) 7.478 7.478 7.478 90.000 90.000 90.000
Orthorhombic P212121 4.454 4.464 20.906 90.000 90.000 90.000

Cubic P213 (II) 7.476 7.476 7.476 90.000 90.000 90.000
Trigonal R3 8.030 8.030 8.030 109.155 109.155 109.155
Triclinic P1 4.659 4.659 4.660 90.155 90.154 89.832
Cubic Pm3m 4.728 4.728 4.728 90.000 90.000 90.000

Table 9: Lattice parameters after relaxation with functional LDA for each of the six
studied phases.

Finally, in Fig. 5 we can visualize the crystal structure for each phase represented with
VESTA.
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(a) Cubic P213 (I) (b) Orthorhombic P212121

(c) Cubic P213 (II) (d) Trigonal R3

(e) Triclinic P1 (f) Cubic Pm3m

(g) Ions legend

Figure 5: Crystal structure of the six studied phases (a-f) represented with VESTA. (g)
Legend of which chemical specie represent each color.
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5.2 Phonon dispersion curves

In this section, we present the results of computing phonons along specific reciprocal space
paths in the first irreducible Brillouin zone for the six phases of interest.

Remember that in order to do these simulations we need to generate a supercell, i.e.,
replicate the unit cell a certain number of times along each lattice vector direction (in
our particular case, 2x2x2), and with VASP and Phonopy we can construct the force
constant matrix of your crystal. Then, for each provided k point, Phonopy calculates the
dynamical force constant matrix and diagonalize it in order to obtain the corresponding
eigenfrequencies and eigenmodes.

Once we have determined the eigenfrequencies in each k, in order to represent the results
we need to select a path in the reciprocal space. The optimal path can be obtained with
VASPKIT for a given phase following the approach described in [40].

With this process we can get plots of the phonon frequencies in function of k-space points
through a path that crosses the most important symmetry points.

In Fig. 6 we can see the results for the six studied phases. The four less energetic phases
are stable while the triclinic P1 and the cubic Pm3m have imaginary frequencies, and
thus are not vibrationally stable phases (i.e., correspond to saddle points in the potential
energy surface of the material and thus their energies could be lowered by displacing the
atoms following the eigenmodes of the imaginary phonon frequencies).

Note that the cubic Pm3m has a large amount of imaginary frequencies, this is surprising
since it was observed experimentally. One possible argument to justify this is that these
calculations at zero-temperature conditions whereas the same phase can be entropically
stabilized at finite temperature (see section 7).

Another surprising result is that for the orthorhombic P212121 phase there is a small
pocket of imaginary phonon frequencies around the Γ-point. This suggests that the phase
is not really stable, but it could be due to some numerical artifact due to the neglection of
multipolar interactions in our DFT simulations [59] (in which only those to second order
are exactly taken into account). These corrections would take long times to be computed,
thus there is no point in correcting it for this project.

5.3 Competition between the stable phases

With the computed phonon frequencies we can determine the thermodynamic properties
of the stable phases (see section 3.3.2), like, for instance, their entropies and free energies.

For each phase we can determine its Gibbs energy using the expression:

Gphase = U − TS + pV = EDFT
0 + F phonon, (5.1)

where EDFT
0 is the energy determined with DFT simulation, and F phonon is the free energy

obtained from phonon frequencies.

For some given p and T conditions, the phase with the lowest Gibbs free will be the stable
phase while the others will be meta-stable.
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Figure 6: Phonon dispersion bands and density of frequencies (THz) computed for each
phase (a-f). The first four phases are stable since they do not have phonons with

imaginary frequency, while the last two correspond to unstable phases.
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5.3.1 Harmonic approximation

The results for the Gibbs energy in function of energy are shown in Fig. 7.
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Figure 7: Computed Gibbs Energy per formula unit for the four stable phases in
function of temperature. The more favourable phase in this range of temperatures is the

cubic P213 (I).
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Figure 8: Difference of Gibbs Energy for the three stable phases in relation with the
ground state, the cubic P213 (I), in function of temperature. For a given temperature a

positive value means that the phase is less favourable than the ground state.
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We can see that in the range between T = 0 K and T = 1000 K the phase with the
lowest Gibbs free energy is the ground-state, and we cannot expect any phase transition
for these temperatures.

In Fig. 8 we have plotted the difference of G between the ground state and the other
stables phases. We can see that the most entropic phase (where S is the slope of G) phase
is the trigonal. The used exchange-correlation functional for the phonon calculations was
PBEsol since it is specially appropriate functional for solid simulations.

5.3.2 Quasi-harmonic approximation

In the quasi-harmonic approximation, we take into account the fact that, for a fixed
pressure, the volume of crystal changes with temperature, V (T ), hence this provides a
more accurate description of phase stability. In adopting this approach, we can reassess
the possibility that the trigonal phase becomes the most stable phase at temperatures
below 1000 K.
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Figure 9: Computed Gibbs Energy per formula unit in function of temperature, for the
ground state and the trigonal R3 phase, with the harmonic approximation and using the

quasi harmonic approximation correction.

In Fig. 9 we can visualize the results for the ground-state and the trigonal phase in
the harmonic and quasi-harmonic approximation. We can see that neither in the quasi-
harmonic approximation a phase transition could be expected in the range of temperature
between 0 and 1000 K and without pressure.
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5.4 Optoelectronic properties

5.4.1 Band gap

In this section, we present the determined band gaps computed following the method
described in section 4.2.5.
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Figure 10: Computed band gaps for each of the studied phases (a-f) using different
exchange-correlation functionals.
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In Fig. 10 we can see the results for each of the phases (also the non-stable ones, because
they may be stabilize with temperature) using PBEsol and PBE funtionals, PBEsol and
PBE plus Hartree-Fock exchange term (HSE06 hybrid functional), and HSE06-PBEsol
with spin-orbit coupling effect (SOC). Remember that without taking into account hybrid
functionals and SOC the band gap is usually underestimated.

The importance of using hybrid functionals for these computations is clearly visible, since
the band gap value increases significantly, around three times the value obtained without
hybrid functionals. We can also see that SOC effect is not very important for our material,
it changes the value of the band gap approximately in 0.1 eV.
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Figure 11: Computed band gaps for each phase with the functional HSE06-PBEsol and
taking into account the spin-orbit coupling.

In Fig. 11 we can see the band gaps computed for each phase with the most precise
functional, HSE06-PBEsol plus SOC. The expected band gaps range from 1.27 eV to
2.01 eV, then all the phases are semiconductor materials with a suitable band gap for
optoelectronic applications since the band gap values are within the interval of visible
light frequencies.

5.4.2 Optical properties

Here we show the results for the optical properties determined with the expressions from
section 3.4 using the dielectric tensor determined with the explained approach in section
4.2.6.
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Figure 12: Optical properties computed in function of the wavelength for each of the six
studied phases (a-f). The four optical properties computed are the refractive index n,
the extinction coefficient κ, the absorption coefficient α, and the reflectivity R. The

rainbow stripe indicates the visible light spectrum.

In Fig. 12 we can see the obtained refractive index, extinction coefficient, absorption
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coefficient and reflectivity, in function of the wave-length for the six phases. The results
are similar for all the phases, n and R are small for high energetic light and almost
constant for long wave-lengths, while κ and α have high values for high energetic light
and decrease fast for longer wave-lengths.

For all the phases n takes a maximum value of approximately 3 for ultraviolet wavelengths.
For the extinction coefficient the maximum value is around 1.5 in the same region that
the maximum of n. For R the maximum value is around 0.4.

For optoelectronic applications, such as photovoltaic cells we are specially interested in
the results obtained for the absorption coefficient. In Fig. 13 we have represented this
coefficient for each phase. We can see that the best absorber (the one with highest ab-
sorption values) is the orthorhombic phase, and that the ground-state is a better absorber
for higher energies. Despite this, all the phases seem to be good absorbers for almost all
the visible spectrum. For all the phases the absorption coefficient takes values between
103 and 105 in the visible spectrum. The worst absorber is the cubic Pm3m, the best
absorber for low energies are the P212121, P1 and R3, while for high energies all the
phases (except for the Pm3m phase) present similar results.
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Figure 13: Absorption coefficient in logarithmic scale in function of photon energy for
each of the six studied phases. The rainbow stripe indicates the visible light spectrum.
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6 Conclusions

We have found a series of stable and metastable phases for the archetypal antiperovskite
halide compound AgSBr, which have not been reported previously in experimental nor
theoretical studies. One of them stands out as it seems to be the true ground-state of
the material, a cubic phase with symmetry group P213 and twenty atoms per unit cell.
Despite that at zero-temperature conditions there are other energetically competitive
phases (orthorhombic P212121, another cubic P213 and a trigonal R3), we have proved
that there is no phase transition at least below temperatures of 1000 K, from the results
obtained with the harmonic and the quasi-harmonic approximation.

We have not been able to confirm the stability of the Pm3m phase as determined by
experimentalists, because the zero-temperature energy of this phase lies approximately
0.1 meV/f.u. above that of the lowest energy phase found in our DFT simulations, and
the computed zero-temperature phonon spectrum exhibits imaginary phonon branches,
thus frustrating the estimation of the Gibbs free energy for this phase. Possible reasons
for this lack of agreement can be that either the experimental measurements were over a
slightly different chemical compound or that this phase might stabilize with temperature.
In any case, the electronic energy at T = 0 K for this phase computed with Density
Functional Theory techniques is large higher than the energy for the new ground-state
and it is not very clear that with anharmonic corrections we could solve this problem.

We have observed that PBEsol, SCAN and LDA exchange-correlation functionals provide
similar energetic results. The PBE exchange-correlation functional, however, for some of
the phases (appears a Pca21 phase above the P212121, the second P213, and the R3, while
this does not happen for the other functionals) become more or less energetic than others.
We also have been able to observe that hybrid functionals provide significantly different
results (and more accurate) than standard GGA and meta-GGA functionals, and that
the spin-orbit coupling is not so important for our material.

Finally, we have obtained very interesting optoelectronic properties for the different stud-
ied phases, and it seems that this material could be a good candidate for photovoltaic
applications. The band gap values are good enough (ranging between 1.5 − 2.0 eV) to
have a material that can absorb light in all the visible spectrum and the obtained ab-
sorption coefficients are high enough (up to 105 cm−1 for all the phases) to be used as a
semiconductor material for single-junction solar cells or tandem devices.
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7 Further work

Some of the next steps in this work are very clear. First, by using anharmonic phonon
approaches, we can compute the temperature-renormalized phonon spectrum of all the
investigated phases, thus getting rid of the zero-temperature constrain in our analysis. This
can be done using some specific software packages that helps us with this simulations as
hiPhive package [60], or DynaPhoPy package [61]. With this computations we should be
able to obtain more exact Gibbs energies and see if some vibrationally unstable materials
at T = 0 K conditions may become entropically stabilized at finite temperature conditions.

It also would be interesting to measure another properties of the material such as energy
band diagram, that will give information about if the material has direct or indirect
band gap. Other properties of interest are the thermal conductivity, anharmonicity and
ion transport. And because the main applications are expected to be in photovoltaics, it
would be interesting to study the formation energy of point defects since these can act as
non-radiative recombination centers for photo-excited electron-hole pairs.

Of course, one of the most interesting options is to repeat these simulations for the other
materials of this family Ag3BC with B=S, Se and C=I,Br,Cl.

Finally, other possibilities would be to do some basic device simulations in order to verify
the suitability of anti-perovskite halides for real devices and their optimization in tandem
solar cells.
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Agrawal, and Edgardo Saucedo. Synthesis of Ag3SX (X = Br, I) chalcohalide anti-
perovskite thin films (to be sumbitted).

[14] Richard M Martin. Electronic structure: basic theory and practical methods. Cam-
bridge university press, 2020.

[15] Feliciano Giustino. Materials modelling using density functional theory: properties
and predictions. Oxford University Press, 2014.

42

https://doi.org/10.1524/zkri.2008.0008
https://doi.org/10.1007/s100190000062
https://doi.org/10.1007/s100190000062
https://doi.org/10.1002/solr.202100829
https://doi.org/10.1016/j.ceramint.2021.08.159
https://doi.org/10.1016/j.ceramint.2021.08.159
https://doi.org/10.1021/acs.chemrev.2c00422
https://doi.org/10.1002/pip.541
https://doi.org/10.1023/A:1004598902146
https://doi.org/10.1023/A:1004598902146
https://doi.org/10.1016/S1359-0286(97)80079-4
https://doi.org/10.1143/JPSJ.49.678
https://doi.org/10.1143/JPSJ.49.678
https://doi.org/10.1016/0013-4686(66)87055-X
https://doi.org/10.1016/0167-2738(81)90050-3
https://doi.org/10.1016/0167-2738(81)90050-3
https://doi.org/10.1143/JPSJ.76.114603
https://doi.org/10.1143/JPSJ.76.114603


[16] Pierre Hohenberg and Walter Kohn. Inhomogeneous electron gas. Physical review,
136(3B):B864, 1964.

[17] Walter Kohn and Lu Jeu Sham. Self-consistent equations including exchange and
correlation effects. Physical review, 140(4A):A1133, 1965.

[18] Neil W Ashcroft and N David Mermin. Solid state physics. Cengage Learning, 2022.

[19] Charles Kittel. Introduction to solid state physics. John Wiley & sons, inc, 2005.

[20] Steven H Simon. The Oxford solid state basics. OUP Oxford, 2013.

[21] Mois Ilia Aroyo, Juan Manuel Perez-Mato, Cesar Capillas, Eli Kroumova, Svetoslav
Ivantchev, Gotzon Madariaga, Asen Kirov, and Hans Wondratschek. Bilbao Crystal-
lographic Server: I. Databases and crystallographic computing programs. Zeitschrift
für Kristallographie-Crystalline Materials, 221(1):15–27, 2006.

[22] Simon Min Sze. Semiconductor devices: physics and technology. John wiley & sons,
2008.

[23] Lev I Berger. Semiconductor materials. CRC press, 1996.

[24] W Bludau, A Onton, and W Heinke. Temperature dependence of the band gap of
silicon. Journal of Applied Physics, 45(4):1846–1848, 1974.

[25] Peter J Collings. Simple measurement of the band gap in silicon and germanium.
American Journal of Physics, 48(3):197–199, 1980.

[26] JT Glass, R Messier, and Naoji Fujimori. Diamond, silicon carbide and related
wide bandgap semiconductors. Technical report, Pittsburgh, PA (USA); Materials
Research Society, 1990.

[27] Philip Hofmann. Solid state physics: an introduction. John Wiley & Sons, 2022.
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